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Abstract 

We derive analytical solutions of the electric potential resulting from a direct 
current point source located anywhere within two types of multilayered earth 
structures including layers having linearly varying conductivities and layers 
having binomially varying conductivities. Our solutions are obtained by solving a 
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boundary value problem in the wave number domain and then transforming 
the solution back to the spatial domain. The propagator matrix technique 
is used to formulate the upward-downward recurrences for solving the 
problems. One of these recurrences is applicable to general cases in which, 
the layers have constant, linearly or binomially varying conductivities. 
The equations derived for the electric potential can be used to interpret 
the hole-to-hole, hole-to-surface, and conventional surface array data. The 
inverse problems via the use of the Newton-Raphson and quasi-Newton 
optimization techniques are introduced for finding the conductivity 
parameters. 

1. Introduction 

In geophysical explorations, the traditional resistivity method maps 
the electrical properties of the earth by measuring differences in potential 
caused by a direct current flow between two current electrodes at the 
earth’s surface. Usually interpretations of electrical soundings are 
conducted by assuming that the earth’s structure consists of horizontally 
stratified layers having constant conductivities. A layered earth model is 
used to simulate the stratigraphic target. However, in the real earth 
situation, there are cases, where the subsurface conductivity varies 
continuously rather than discontinuously with depth. A particularly 
interesting case is a multilayered earth with one or more layers having 
linearly varying conductivities. The transitional layer can stand for the 
weathered zone in hard rock areas, where the degree of weathering 
diminishes with depth. This problem was first treated by Mallick and Roy 
[10], who obtained a theoretical solution for the problem of a two layered 
earth with transitional boundary. Jain [8] presented expressions for 
apparent resistivity of a three-layered earth, where the conductivity in 
the second layer varies linearly with depth and changes abruptly at the 
boundaries. Koefoed [9] solved the problem of a layered earth model 
containing an arbitrary number of homogeneous layers and of 
transitional layers in which the resistivities vary linearly with depth. 
Banerjee et al. [3] obtained expressions for apparent resistivity of a 
multilayered earth with a layer having binomially varying conductivity. 
All these investigations located a current source at the earth’s surface. 
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The electrical method using buried electrodes is proposed for 
determining the apparent resistivity of multiple layers located 
underground. This particular electrode configuration is very useful when 
conventional electrical methods cannot be used, especially if the ground 
depth becomes very important. The calculated apparent resistivity shows 
a substantial quality increase in the measured signal caused by the 
underground targets, from which little or no response is measured by 
using conventional surface electrode methods. Investigations using buried 
electrodes were reported for layers having constant or exponentially 
varying conductivities. Alfano [1] considered a three-layered earth model 
with homogeneous layers and demonstrated that the uncertainty in the 
interpretation of resistivity soundings can be reduced by using buried 
electrodes. Daniels [7] presented a solution for the problem of a 
horizontally stratified layered earth containing an arbitrary number of 
layers having constant resistivities. Baumgartner [4] used submerged 
electrodes for determining the apparent resistivity of multiple 
homogeneous layers located underwater. Sato [12] developed a solution 
for the problem of a layered earth with all layers possessing exponentially 
varying resistivities. 

In this study, we derive analytical solutions of the electric potential 
resulting from a direct current point source located anywhere within two 
types of multilayered earth structures including layers having linearly 
varying conductivities and layers having binomially varying conductivities. 
The Hankel transform is introduced to our problems and analytical 
results are derived. The inversion processes, using the Newton-Raphson 
and quasi-Newton methods, are conducted to estimate the conductivity 
parameters. 

2. Model and Basic Equations 

A geometric model of the earth’s structure consists of two conductive 
half-spaces (see Figure 1). The half-space above the ground surface 
( )0<z  is a region of air, whereas the half-space below the ground surface 
( )0>z  is an n-layered horizontally stratified earth with depths to the 

layers ,, 21 hh  1, −nh…  (the lowermost layer extending to infinity) 
measured from the ground surface, where 2≥n  is an integer.  
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Figure 1. Geometric model of the earth’s structure. 
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A point source of direct current I is deliberately located at the interface 
shz =  of layer s and layer ( )111 −≤≤+ nss  for simplifying the 

mathematics. Each layer has conductivity as a function of depth, i.e., 
( )zkσ  for layer .0 nk ≤≤  The electric potential V in direct current 

conditions satisfies the equation 

,V∇−=E   (1) 

where E is the vector electric field. The vector current density J and the 
vector electric field are related through Ohm’s law as 

,EJ σ=   (2) 

where σ  is the conductivity of the medium. The vector current density 
satisfies the equation: 

,0=⋅∇ J   (3) 

except at current sources or sinks. Since the problem is axi-symmetric in 
cylindrical coordinates ( ),,, zr φ  it follows that V depends only on r and z. 
Eliminating E and J from Equations (1), (2), and (3), we obtain Poisson’s 
equation in cylindrical coordinates 

.011
2

2

2

2
=

∂
∂

∂
σ∂

σ
+

∂

∂+
∂
∂+

∂

∂
z
V

zz
V

r
V

rr
V  (4) 

The Hankel transform (Ali and Kalla [2]) is introduced and defined by 
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where 0J  is the Bessel function of the first kind of order zero. Taking the 
transformation on both sides of Equation (4), we obtain 
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Therefore, the electric potential in each layer can be obtained by taking 
the inverse Hankel transform of the solution of Equation (7), which 
satisfies the following boundary conditions (Sato [12]): 

(1) The electric potential 0V  tends to zero as z tends to minus infinity. 

(2) The electric potential nV  tends to zero as z tends to infinity. 

(3) The electric potential needs to be continuous on each of the 
boundary planes, i.e., for each ,10 −≤≤ nk  
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→→ +−

= k
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k
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VV
kk

 (8) 

(4) The vertical component of the current density needs to be 
continuous on each of the boundary planes except on ,shz =  i.e., for each 
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(5) The total current flowing out of any cylindrical surface around the 
current source must be equal to the current intensity, i.e., for any radius 
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3. Response of an Air Region 

The equation for the electric potential in an air region, denoted by 

,~
0V  can be determined by simplifying Equation (7) with constant 0σ  as 
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and the solution is 

( ) ,,~
000

zz eBeAzV λ−λ +=λ   (12) 

where 0A  and 0B  are arbitrary constants, which can be determined by 
using the boundary conditions. Thus, the electric potential in an air 
region is 

( ) ( ) ( ) ., 000
0

0 λλ+= λ−λ
∞

∫ drJeBeAzrV zz   (13) 

4. Response of a Multilayered Earth with  
Layers Having Linearly Varying  

Conductivities 

For each layer k, where nk ≤≤1  and ,2≥n  the variation of 
conductivity is denoted by 

( ) ,kkk czmz +=σ   (14) 

where kc  and 0≠km  are constants, which preserve ( ) .0>σ zk  Hence, 
the equation for the electric potential in layer k can be simplified by 
substituting Equation (14) into (7) as 
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and the solution is 
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where 

( ) ,1, zzvc
m
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k
k
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νI  and νK  are the modified Bessel functions of the first and second 
kinds of order kA,ν  and kB  are arbitrary constants, which can be 
determined by using the boundary conditions. Thus, the electric potential 
in layer k is 
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Using the boundary conditions (8) and (9), for 1,10 +−≤≤ kAsk  and 

1+kB  can be written in terms of kA  and kB  as 
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where the propagator matrix is 
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whereas if ,0=k  
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Similarly, if ,1−< ns  then kA  and kB  can be written in terms of 1+kA  
and 1+kB  as 
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for ,11 −≤≤+ nks  and the propagator matrix is given by 
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where 
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Hence, Equation (20) can also be applied to obtain: 
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On the boundary plane ,shz =  the boundary condition (10) requires 
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Inverting Equation (23) by using the Fourier-Bessel integral (Watson 
[13]) yields 
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Thus, the boundary conditions (8) and (10) lead to 
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where 1+Θs  is determined by replacing k with s in Equation (21). 
Substituting Equations (19) and (22) into (25), we obtain 
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To guarantee the convergence of the electric potential 0V  when z tends to 
minus infinity, we must take 

.00 =B   (27) 

Similarly, the convergence of the electric potential nV  when z tends to 
infinity can be guaranteed by taking 
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Therefore, Equation (26) can be rewritten as a system of two linear 
equations in terms of the unknowns 0A  and nB  as 
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Since the coefficient matrix of this system is nonsingular (see Chen and 
Oldenburg [6], Yooyuanyong and Sripanya [15, 17]), by Cramer’s rule, 
the system has a unique solution 
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As ,,, 00 nABA  and nB  are determined, so kA  and ,kB  where 0≠k  

and n can be obtained from the upward-downward recurrence as shown 
in Equations (18) and (20). 

5. Response of a Multilayered Earth with  
Layers Having Binomially Varying  

Conductivities 

For each layer k, where nk ≤≤1  and ,2≥n  the variation of 

conductivity is denoted by 
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where ,, kk pc  and 0≠kd  are constants, which preserve ( ) .0>σ zk  

Hence, the equation for the electric potential in layer k can be simplified 
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,0~~

1

~
2

2

2
=λ−

∂
∂

+
+

∂

∂
k

k
k
kkk Vz

V
zd

pd
z
V  (33) 

and the solution is 

( ) ( ) ( ) ( ) ,~~~~~,~











/
λ+












/
λ

/=λ γ−γ−
γ zvKBzvIAzvzV k

k
kk

k
kkk kk

k  (34) 

where 

( ) ,2
1,~1~,~ k

kkkkk
pzzvd −

=γ+=/=  



MATHEMATICAL INVERSE PROBLEM OF ELECTRIC … 49

kA  and kB  are arbitrary constants, which can be determined by using 

the boundary conditions. Thus, the electric potential in layer k is 
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Proceeding as in Section 4, after using the boundary conditions, we obtain 
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for ,10 −≤≤ sk  and the propagator matrix is given by 
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Hence, Equations (36) and (37) can be applied to obtain 
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On the boundary plane ,shz =  it follows from Equation (10) that 
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where 1
~

+Θs  is determined by replacing k with s in Equation (38). 

Substituting Equation (39) into (40) and using 

,00 nAB ==   (41) 
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we obtain a system of two linear equations in terms of the unknowns 0A  
and nB  as 
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where ijU~  and ijV
~  are determined by 
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Since the coefficient matrix of this system is nonsingular (see Chen and 
Oldenburg [6], Yooyuanyong and Sripanya [15, 17]), by Cramer’s rule, 
the system has a unique solution 
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As ,,, 00 nABA  and nB  are determined, so kA  and ,kB  where 0≠k  
and n, can be obtained from the upward-downward recurrence as shown 
in Equations (36) and (37). 

6. Numerical Experiments and  
Inversion Processes 

In our inverse model examples, we simulate array data of the electric 
potential from two forward models of the earth structures. Both of the 
example ground models have two layers. The buried depth of current 
source for our entire models is 10 meters. The conductivity in the region 
of air is approximately equal to zero. The overburden has a constant 
conductivity denoted by a with thickness h, whereas the host has a 
linearly varying conductivity denoted by ( ) ( )hzmaz −+=σ  with infinite 
depth. The values of model parameters are given in Table 1.  
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Table 1. Model parameters used in our inversion examples 

Model a (in S/m) m (in S/m2) h (in m) 

1 0.1692857143 0.0261904761 10 

2 0.1692857143 0.0261904761 15 

The parameter a is a conductivity at the ground surface, which can be 
assumed to be known from the measurement. The iterative procedure 
using the Newton-Raphson method is applied to estimate the unknown 
parameter m of the first example model, whereas the unknown 
parameters m and h of the second model are estimated by using the 
quasi-Newton optimization technique. Chave’s algorithm [5] is used for 
numerically calculating the inverse Hankel transform of the electric 
potential solutions. The special functions are computed by using the 
numerical recipes source codes (Press et al. [11]). Random errors up to 3% 
are superimposed on the scaled electric potential from the forward 
problem to simulate the set of real data. We start the iterative processes 
to find the values of the conductivity parameters with initial guess 

2mS01.0=m  and .m10=h  The optimal result of the first model 
converges to the true value with percentage error less than 2.3% after 
using 19 iterations. The graph of the true and calculated conductivity 
models are plotted as shown in Figure 2.  
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Figure 2. Graph of conductivity σ  against depth z for our first model. 

We see that the graph of the calculated model is closed to the true 
model. The inversion of the second model leads to the best value having 
percentage errors about 4.3% and 8.0% for the parameters h and m, 
respectively, after using 23 iterations. Figure 3 shows the true and 
calculated conductivity models for the second model example. The graph 
of the calculated model is also closed to the true model. These illustrate 
the advantage in using the Newton-Raphson and quasi-Newton methods, 
which give the result much better than using another method of 
inversion, especially for estimating only one parameter (e.g., Yooyuanyong 
[14, 16]). We note that the number of unknown parameters in the first 
model example is less than the second example. Not surprisingly, the 
convergence of inversion for the first model is faster than the second 
model. Moreover, the optimal result of the first model is also better than 
the second model. 
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Figure 3. Graph of conductivity σ  against depth z for our second model. 

7. Conclusion 

We derive analytical solutions of the electric potential resulting from 
a buried current source by using the recurrence relations. The solutions 
can be used to interpret the hole-to-hole, hole-to-surface, and conventional 
surface array data (the buried depth of current source is assumed to be 
zero). Two simple cases are used to investigate the conductivity profiles. 
The inversion processes, using the Newton-Raphson and quasi-Newton 
methods, are conducted to estimate the conductivity parameters. The 
methods lead to very good results and have the robustness of the 
procedures. 
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